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Abstract

Operational modal analysis procedures are efficient techniques to identify modal properties of
structures excited through unknown random noise produced during operation. In many practical
cases, harmonic excitations are often present in addition to the white-noise and, if the harmonic
frequency is close to structural frequencies, standard identification techniques fail. Here, a method
is presented to take into account the harmonic excitations while doing modal parameter identification
for operational modal analysis (OMA). The proposed technique is based on the Ibrahim Time
Domain method and explicitly includes the harmonic frequencies known a priori. Therefore, the
modified technique allows proper identification of eigenfrequencies and modal damping even
when harmonic excitation frequencies are close to the natural frequencies of the structures.
Experimental results are shown in the presence of multi-harmonic loads for a steel plate to validate the
method.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In operational modal analysis (OMA) structural modal parameters can be computed
without knowing the input excitation to the system. It is therefore a valuable tool to
analyze structures submitted to excitation generated by their own operation. Presently,
operational modal analysis procedures are limited to the case when excitation to the system
is white stationary noise. There are different ways to identify modal parameters in that case.
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One approach called the natural excitation technique (NExT) [1] consists in com-
puting correlations between the response signals and observe that they can be compared
to impulse responses of the system. Hence, the output correlation functions can be pro-
cessed as the impulse responses function of the system in order to extract modal
parameters. Standard time-domain identification techniques such as the least squares
complex exponential method (LSCE) [2], the eigenvalue realization algorithm (ERA) [3] and
the Ibrahim Time Domain method (ITD) [4–7] can be applied as identification techniques.
Further details on the implementation of time-domain identification techniques can be found, e.g.,
in Ref. [8].
In many applications such as wind turbines, cars and ships harmonic excitation is present in

addition to random loads due to unbalanced masses in rotating components or due to
aerodynamic and electrical forces. A straightforward way to deal with harmonic excitations
consists of considering the harmonic response as a virtual non-damped eigenmode of the system.
So while doing modal identification, those virtual, non-damped, modes can be observed and
identified as arising from harmonic excitation. In practice however if the excitation frequencies are
close to natural frequencies of the system, identified natural frequencies and associated damping
can no longer be measured accurately by the algorithms. Indeed, in that case, the harmonic
response masks the actual eigenresponse and classical identification methods are not well suited to
separate the harmonic and eigencomponents.
Another way of dealing with harmonic excitations is to filter out the harmonic part of the

signals from the actual response of the systems. This can only be done while harmonic frequencies
are well separated from the natural frequencies of the system, so that the harmonic part of the
response can be filtered out efficiently without affecting the response part necessary for
identification. Therefore, this approach cannot be applied when the harmonic responses are
predominant and have a frequency close to natural frequencies.
In an earlier paper [9], a method to take into account harmonic excitations in OMA was

proposed. That method was based on the modification of the standard LSCE method.
In this paper, a similar method is developed, but based on the single station time domain

(SSTD) algorithm [10], itself a variant of the ITD approach. In a way similar to that proposed in
Ref. [9], it will be assumed that the harmonic frequencies are known a priori. Note that harmonic
excitation frequencies can be found easily in practice given the nature of the machine or using pre-
processing of the measured data.
Experimental results obtained with the modified ITD will be compared to results obtained with

standard method in the presence of harmonics. In addition to the modified ITD method results,
previous modified LSCE method results will also be given to compare the effectiveness of both
approaches.

2. Theoretical background

In this section the principle of the NExT as described in Ref. [1] is first outlined. Then,
combining the standard ITD method [6] and the SSTD [10] algorithm, a new SIMO version of the
SSTD is formulated. In the last part of this section, a modification to the SIMO–SSTD is
proposed in order to account explicitly for harmonic responses.
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2.1. Natural excitation technique

When a system is excited by pure stationary white noise, the correlation between dynamic
responses can be exploited to identify modal parameters. One procedure to analyze structures
under random excitation is based on the fact that the correlation function xijðtÞ between the
response signals i and j at a time interval of t is similar to the response of the structure at i due to
an impulse on j: The theoretical basis for this results has been outlined in the NExT [1]: it is shown
that correlation functions between responses to stationary white noise are expressed by

xijðtÞ ¼
XN

r¼1

friArj

mrod
r

eð�zron
r tÞ sin ðod

r t þ yrÞ; ð1Þ

where fri is the ith component of the eigenmode number r of the conservative system, Arj is a
constant associated to the jth response signal taken as reference, mr is the rth modal mass, zr and

on
r are respectively the rth modal damping ratio and no-damped eigenfrequency, od

r ¼ on
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
and yr is the phase angle associated with the rth modal response. Hence the correlation between
signals is a superposition of decaying sinusoids having damping and frequencies equal to the
damping and frequencies of the structural mode. In terms of the complex modes of the structure,
the correlation function (1) can be written as (see for instance [11])

xijðkDtÞ ¼
XN

r¼1

crie
srkDtCrj þ

XN

r¼1

c�rie
s�r kDtC�

rj ; ð2Þ

where sr ¼ orzr þ ior

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2r Þ

q
and where Crj is a constant associated with the rth mode for the

jth response signal, which is the reference signal. Dt is the sampling time step and the superscript �

denotes the complex conjugate. Note that in conventional modal analysis, these constant
multipliers are modal participation factors. Numbering all complex modes and eigenvalues in
sequence, Eq. (2) can be written as

xk ¼ xðkDtÞ ¼
X2N

r¼1

are
srkDt; ð3Þ

where xk is the correlation between i and j for a time kDt:

2.2. A variant of the ITD method

The ITD algorithm [6] uses the time response of several outputs in order to find modal
parameters. In the standard ITD method, at least 2N response location need to be measured to
identify a model of order N: The SSTD method proposed in Ref. [10] uses an approach similar to
the ITD, but the identification is based on the response at a unique location, considered for
different time intervals.
The method presented next is in fact a new blend of the ITD and SSTD methods to get an

SIMO algorithm like the standard ITD, but where several time intervals per response are used as
in the SSTD.
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Writing Eq. (3) shifted for different starting time samples, gives

x1 x2 ? ? xL

x2 x3 ? ? xLþ1

^ ^ ? ? ^

x2N x2Nþ1 ? ? xLþ2N�1

2
6664

3
7775

Xð2N�LÞ

¼

a1 a2 ? a2N

a1e
s1Dt a2e

s2Dt ? a2Ne
s2NDt

^ ^ ^^^ ^

a1e
s1ð2N�1ÞDt a2e

s2ð2N�1ÞDt ? a2Ne
s2Nð2N�1ÞDt

2
66664

3
77775

Að2N�2NÞ

es1t1 es1t2 ? ? es1tL

es2t1 es2t2 ? ? es2tL

^ ^ ? ? ^

es2N t1 es2N t2 ? ? es2N tL

2
6664

3
7775

Kð2N�LÞ

; ð4Þ

where tk ¼ kDt; N is the total number of modes considered for the identification and L is the
number of correlation values per row. The identification order N is usually not known a priori but
can be increased until the identified parameters converge.
In symbolic form, (4) can be written as

X
ð2N�LÞ

¼ A
ð2N�2NÞ

K
ð2N�LÞ

: ð5Þ

A similar equation can be written by shifting all the discrete response values by Dt as follows:

x2 x3 ? ? xLþ1

x3 x4 ? ? xLþ2

^ ^ ? ? ^

x2Nþ1 x2Nþ2 ? ? xLþ2N

2
6664

3
7775

#X
ð2N�LÞ

¼

a1e
s1Dt a2e

s2Dt ? a2Ne
s2NDt

a1e
s12Dt a2e

s22Dt ? a2Ne
s2N2Dt

? ? ^^^ ^

a1e
s12NDt a2e

s22NDt ? a2Ne
s2N2NDt

2
66664

3
77775

#A
ð2N�2NÞ

es1t1 es1t2 ? ? es1tL

es2t1 es2t2 ? ? es2tL

^ ^ ? ? ^

es2N t1 es2N t2 ? ? es2N tL

2
6664

3
7775;

Kð2N�LÞ

ð6Þ

#X
ð2N�LÞ

¼ #A
ð2N�2NÞ

K
ð2N�LÞ

: ð7Þ

Now let us define a system matrix S so that

S
ð2N�2NÞ

A
ð2N�2NÞ

¼ #A
ð2N�2NÞ

: ð8Þ
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Pre-multiplying Eq. (5) by S; gives

S
ð2N�2NÞ

X
ð2N�LÞ

¼ S
ð2N�2NÞ

A
ð2N�2NÞ

K
ð2N�LÞ

ð9Þ

and inserting definition (8),

S
ð2N�2NÞ

X
ð2N�LÞ

¼ #A
ð2N�2NÞ

K
ð2N�LÞ

: ð10Þ

Finally, taking account of Eq. (7) gives

S
ð2N�2NÞ

X
ð2N�LÞ

¼ #X
ð2N�LÞ

: ð11Þ

Eq. (11) uses a single-output signal due to a single input (correlation between i and j) and
corresponds to the SSTD method, itself similar to the ITD [10]. In order to find a SIMO variant of
the SSTD, note that the system matrix S is independent of the location of measurements and thus
that Eq. (11) remains valid for any SISO combination. Hence the values of S can also be obtained
by considering several responses to an input and by satisfying Eq. (11) in a least-squares sense. So
let Eq. (11) for n responses to a single impulse (SIMO) be written as

Sð2N�2NÞ

X1 X2 ? Xn

ð2N � LÞ ð2N � LÞ ð2N � LÞ

" #

ð2N � LnÞ

¼

#X1 #X2 ? #Xn

ð2N � LÞ ð2N � LÞ ð2N � LÞ

" #

ð2N � LnÞ

;

ð12Þ

where Xj is the matrix of correlation functions defined in Eq. (4) expressed between the reference i

and an output j: In more compact form

S
ð2N�2NÞ

Y
ð2N�LnÞ

¼ #Y
ð2N�LnÞ

: ð13Þ

A least-squares solution S of Eq. (13) can be computed (using a singular value decomposition of S
to compute a pseudo-inverse).
Finally the eigenvalues are deduced from S be observing that Eq. (8) can be decomposed as

Sð2N�2NÞ

are
sr0Dt

^

are
srð2N�1ÞDt

8><
>:

9>=
>; ¼

ð2N � 1Þ

are
sr0Dt

^

are
srð2N�1ÞDt

8><
>:

9>=
>;

ð2N � 1Þ

esrDt; r ¼ 1; 2y2N ð14Þ

and therefore

½S� esrDtI�

are
sr0Dt

^

are
srð2N�1ÞDt

2
64

3
75 ¼ 0: ð15Þ

Eq. (15) is a standard eigenvalue problem, from which sr can be found. Modal frequencies and
damping can be computed from the values of sr:
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2.3. Modification of SIMO–SSTD in the presence of harmonic excitation

When in addition to the stationary white noise the structure is excited by harmonic excitations,
the dynamic response will include the associated forced harmonic components which can be seen
as virtual non-damped modes in the correlation functions. These virtual modes can in theory be
identified as before by an SIMO–SSTD method, but, as illustrated in Ref. [9], identification of
those non-damped virtual modes can be very difficult in practice.
Assume that the harmonic excitation has a frequency o: The modal superposition (3) describing

the impulse response now includes a forced harmonic part equivalent to a virtual modal response
with frequency s ¼ 7io so that esrDt ¼ e7ioDt ¼ cos ðorDtÞ7i sinðorDtÞ: This solution being
known a priori the system matrix S will be forced to have e7ioDt as an eigensolution: writing
Eq. (14) for s ¼ 7io and rearranging, S must satisfy

Sð2N�2NÞ

0 1

sin ðo1DtÞ cos ðo1DtÞ

: :

: :

sin ðð2N � 2Þo1DtÞ cos ðð2N � 2Þo1DtÞ

sinðð2N � 1Þo1DtÞ cos ðð2N � 1Þo1DtÞ

2
6666666664

3
7777777775

ð2N � 2Þ

¼

sin ðo1DtÞ cos ðo1DtÞ

sin ð2o1DtÞ cos ð2o1DtÞ

: :

: :

sin ðð2N � 1Þo1DtÞ sin ðð2N � 1Þo1DtÞ

sin ð2No1DtÞ cos ð2No1DtÞ

2
6666666664

3
7777777775

ð2N � 2Þ

ð16Þ

which in symbolic form becomes

S
ð2N�2NÞ

H1

ð2N�2Þ
¼ #H1

ð2N�2Þ
ð17Þ

If m harmonic excitation frequencies exist, Eq. (17) can be generalized to

Sð2N�2NÞ

H1 H2 ? Hm

ð2N � 2Þ ð2N � 2Þ ð2N � 2Þ

" #

ð2N � 2mÞ

¼

#H1 #H2 ? #Hm

ð2N � 2Þ ð2N � 2Þ ð2N � 2Þ

" #

ð2N � 2mÞ

ð18Þ

symbolically written as

S
ð2N�2NÞ

H
ð2N�2mÞ

¼ #H
ð2N�2mÞ

: ð19Þ

The system matrix S must satisfy the dynamic equation (13) and the harmonic relation (19). So S
is solution of

Sð2N�2NÞ

H Y

ð2N � 2mÞ ð2N � LnÞ

" #

ð2N � ð2m þ LnÞÞ

¼

#H #Y

ð2N � 2mÞ ð2N � LnÞ

" #
:

ð2N � ð2m þ LnÞÞ

ð20Þ
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The objective is to solve Eq. (20) exactly for the harmonic part and therefore the matrices in
Eq. (20) are partitioned as

S1 S2

ð2m � 2mÞ ð2m � ð2N � 2mÞÞ

S3 S4

ðð2N � 2mÞ � 2mÞ ðð2N � 2mÞ � ð2N � 2mÞÞ

2
6664

3
7775

ð2N � 2NÞ

H1 Y1

ð2m � 2mÞ ð2m � LnÞ

H2 Y2

ðð2N � 2mÞ � 2mÞ ðð2n � 2mÞ � LnÞ

2
6664

3
7775

ð2N � ð2m þ LnÞÞ

¼

#H1
#Y1

ð2m � 2mÞ ð2m � LnÞ
#H2

#Y2

ðð2N � 2mÞ � 2mÞ ðð2n � 2mÞ � LnÞ

2
66664

3
77775:

ð2N � ð2m þ LnÞÞ

ð21Þ

Eq. (21) is first solved for S1 and S3 so that the harmonic part (19) is satisfied exactly, namely

S1 ¼ ð #H1 � S2H2ÞH�1
1 ; ð22Þ

S3 ¼ ð #H2 � S4H2ÞH�1
1 : ð23Þ

The remainder of S is then computed from the response equations in Eq. (12) (corresponding to
Eq. (13))

S2ðH2H
�1
1 Y1 � Y2Þ ¼ ð #H1H

�1
1 Y1 � #Y1Þ; ð24Þ

S4ðH2H
�1
1 Y1 � Y2Þ ¼ ð #H2H

�1
1 Y1 � #Y2Þ: ð25Þ

These last relations are solved in a least-squares sense for S2 and S4: Once S is known, the system
eigenvalues are obtained by solving the eigenvalue problem (15). Note that s ¼ 7io will
obviously be one of the solutions by construction.

3. Experimental examples

The technique discussed above was applied to the analysis of a steel, rectangular plate in the
laboratory. As shown in Fig. 1 the plate was suspended using soft strings. A shaker was applied
on the structure to provide stationary noise excitation as well as harmonic loads. A total of 32,768
discrete time samples per response channel have been obtained for each experiment. Sampling was
done at 2560 Hz: Six locations are chosen as shown in the diagram, where response signals were
taken.
Due to the limited number of acquisition channels (four), two sets of measurements have been

done for each test described hereafter. Accelerometer one has been kept at the same location in
each measurement set and is used as reference signal (for discussion of practicalities, see Ref. [12]).
The level of vibration has been maintained constant throughout each test.
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Correlation functions in the tests presented here have been computed with reference to the
response of the first accelerometer. Since the first accelerometer is at the corner of the plate, it is
assumed that this location does not correspond to a vibration node for the modes of interest. For
the same reason, the shaker excitation is applied at location No. 3, another corner of the plate (see
Fig. 1). It will be assumed that the shaker excites all fundamental modes of the plate.
In the modal identification technique, correlation between signals are treated like impulse

response functions. Since a single reference signal has been used, all identification methods will
work on the principle of a SIMO identification.
In the examples, modal parameters will first be computed only with stationary white noise input

to get the modal parameters as would be done in a normal OMA setting. Then, the cases when
harmonic excitations are present along with the random loads will be considered. For all
identification methods, the number of correlation data per row and per signal (L in Eq. (4)) is
taken as L ¼ 200: The total number of discrete correlation values used in the identification is
L þ 2N for each correlation function, N being the order of the identified model.

3.1. Pure stationary white noise excitation

Here, the experiment was done with stationary white noise introduced between 0 and 1000 Hz;
to excite all the modes properly. Eigenfrequencies and damping values were identified with the
SIMO–SSTD version of the ITD method described by Eq. (12) and the LSCE method. In Fig. 2
and in Table 1 natural frequencies and associated damping are reported. Note that the parameters
identified by the SIMO–SSTD are nearly equal to the ones computed by the LSCE approach
(Fig. 3).
It can be seen from the figure that the modes corresponding to peaks in the PSD plot are found

in a stable manner by both identification methods. It is also observed that there is an additional
stability line at 59 Hz; which is not listed in Table 1. It was found that this excitation frequency
was due to an amplifier problem. Now concentrate on the mode at 271:047 Hz: In the subsequent
examples, in addition to the random excitations, harmonic excitations will be added near to that
271:047 Hz mode and modal parameters of this particular mode will be identified. There is
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Fig. 1. Experimental set-up for a plate.
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particular interest in investigating the accuracy of the identification when harmonic excitations
with frequencies close to the 271:047 Hz eigenfrequency are present.

3.2. Two harmonics at 274 and 276 Hz

In this experiment, two harmonic frequencies additional to the white noise are present
at 274 and 276 Hz; which are close to the 271:047 Hz modal frequency of the system. In

ARTICLE IN PRESS

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90
0.00% 0.60% 1.20% 1.80% 2.40% 3.00%

Frequency, Hz

N
um

be
r 

N
 o

f m
od

es
 u

se
d 

in
 th

e
id

en
tif

ic
at

io
n damping

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
,d

B

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

Fig. 2. Stability diagram for white noise excitation only computed by SIMO–SSTD method.

Table 1

Frequencies and associated dampings (white noise only)

SIMO–SSTD LSCE

Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%)

28.754 1.726 28.665 1.794

141.731 0.326 141.754 0.327

271.047 0.300 271.093 0.297

328.105 0.226 328.150 0.225

408.485 0.132 408.546 0.132

560.472 0.486 560.563 0.483

624.050 0.470 624.130 0.481

678.931 0.164 679.059 0.180

731.271 0.162 731.642 0.153

844.701 0.282 844.826 0.267

892.166 0.280 892.337 0.275
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Fig. 4 two peaks at 274 and 276 Hz are clearly observed from the power spectral density
(PSD) plot. One secondary peak is present slightly below 274 Hz which might be representing
the 271:047 Hz natural frequencies of the system. As described in the theory, four additional
rows of sin and cos terms are introduced to explicitly account for the two harmonic frequencies

ARTICLE IN PRESS

100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

0.00% 0.80% 1.60% 2.40% 3.20% 4.00%

Frequency,Hz

N
um

be
r 

N
 o

f m
od

es
 u

se
d 

in
 th

e
id

en
tif

ic
at

io
n

damping

P
ow

er
S

pe
ct

ra
l D

en
si

ty
,d

B

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

Fig. 3. Stability diagram for white noise excitation only computed by LSCE method.

Fig. 4. PSD of the acceleration at position 1 for random loads and two additional harmonic excitations, and

stabilization diagram for the SIMO–SSTD (13) and for the SIMO–SSTD modified to explicitly include harmonic

components (21). B; Eigenparameters from modified SIMO–SSTD; þ; harmonics in modified SIMO–SSTD; J;
SIMO–SSTD.
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in the response matrices (see Eqs. (17) and (21)). Fig. 4 shows the stability diagram superimposed
on the auto-spectrum diagram. In Table 2 frequencies and dampings for modes
in the neighborhood of 271:047 Hz are listed. These modal parameters were found
with the SIMO–SSTD and the SIMO–SSTD variant including harmonics as presented in this
paper.
From Table 2 and Fig. 4 it can be concluded that, when using the normal SIMO–SSTD, the

identified frequencies are associated with the two fundamental harmonic frequencies. Note that
the identified damping corresponding to the harmonic frequencies are not small, while they should
be null in theory. Hence, in practice, it would be difficult at this point to assimilate the identified
modes to harmonic responses and the analyst would probably conclude that the identified
parameters correspond to true eigenmodes.
When applying the new method, two harmonic components of frequencies corresponding to the

periodic excitations, namely 274 and 276 Hz are introduced in the Hankel matrix. The
stabilization diagram is shown in Fig. 4. In Table 2 the identified modal frequency corresponding
to the mode in the neighbourhood of 271:047 Hz and its associated damping are reported. Note
that harmonic frequencies are identified exactly by construction in the modified SIMO–SSTD
method and are therefore not listed in the table. It is seen that the identified eigenfrequency and
the associated damping are very close to the expected values.
Modal parameters were also computed using the previously published modified LSCE

method [9] which also explicitly takes account of the harmonic components, but which is
based on the LSCE algorithm. The modified LSCE yields 270:911 Hz and the associated
damping is 0.169%. Therefore, whereas modal parameters could not be computed
extracted properly from the standard SIMO–SSTD method, the modified SIMO–SSTD
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Table 2

Frequencies and associated damping identified by the SIMO–SSTD and the modified SIMO–SSTD

Modes SIMO–SSTD Modified SIMO–SSTD

Freq. 1

(Hz)

Damp. 1

(%)

Freq. 2

(Hz)

Damp. 2

(%)

Freq. 3

(Hz)

Damp. 3

(%)

Freq.

(Hz)

Damp.

(%)

80 — — 273.849 0.069 276.031 0.136 270.031 0.341

76 — — 273.813 0.080 275.965 0.168 271.009 0.247

72 — — 273.856 0.099 276.042 0.202 270.945 0.246

68 — — 273.860 0.075 276.065 0.140 270.975 0.256

64 268.936 0.078 273.948 0.121 276.295 0.248 270.970 0.249

60 268.749 0.543 274.039 0.135 276.611 0.100 271.037 0.200

56 269.325 1.358 274.110 0.160 276.916 0.468 271.095 0.257

52 267.396 1.223 274.068 0.177 276.459 0.546 270.964 0.190

48 — — 274.123 0.223 275.75 0.814 271.072 0.316

44 — — 274.184 0.279 274.800 0.729 271.357 0.425

40 — — 274.176 0.295 274.764 0.664 271.301 0.545

36 — — 273.947 0.378 274.783 0.419 272.125 1.638

32 — — 273.773 0.356 274.938 0.357 — —

28 — — 273.875 0.330 275.020 0.411 — —

24 — — 273.999 0.236 275.532 0.570 — —
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and LSCE methods yield accurate eigenfrequencies even for low identification orders. Note
that the damping identified by the modified SIMO–SSTD is slightly different from the
one identified in the absence of harmonic excitation (namely 0.300%, see Table 1). However, it
seems that the modified SIMO–SSTD yields more accurate damping ratios than the modified
LSCE.

3.3. Three additional harmonics at 277, 282 and 287 Hz

Now three sine harmonic frequencies at 277, 282 and 287 Hz are given as input to the shaker
along with the stationary white noise in order to investigate the effectiveness of the proposed
method in the presence of harmonics components of high amplitude. As mentioned in the theory,
all three harmonics have been introduced in the Hankel matrix of the proposed method to take
into account the harmonic frequencies.
In Fig. 5 three harmonic frequencies can be clearly identified at 277, 282 and 287 Hz: Observe

also that there is a peak, just before the first harmonic frequency, which corresponds to the
natural frequency.
As shown in Table 3 and Fig. 5, the basic SIMO–SSTD method exhibits two stabilization

lines. Those lines correspond to 277 and 287 Hz; which are related to two of the
harmonic frequencies introduced in the signal. There is no indication of the presence
of the second harmonic frequency in the graph. Although in theory those frequencies
should be associated with zero damping, the results in Table 3 indicate that the damping
of the identified harmonic parts are quite significant. It can thus be concluded that, when using
standard identification procedure such as the SIMO–SSTD version of the ITD, the identification
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Fig. 5. PSD of the acceleration at position 1 for random loads and three additional harmonic excitations, and

stabilization diagram obtained from the SIMO–SSTD and the modified SIMO–SSTD. B; Eigenparameters from

modified SIMO–SSTD; þ; harmonics in modified SIMO–SSTD; J; SIMO–SSTD.
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procedure breaks down in the presence of harmonic excitations with frequencies close to
eigenfrequencies.
Fig. 5 and Table 3 also show the stability diagram for the modified SIMO–SSTD method

proposed in this paper. The last three frequency lines belong to the three harmonics, and their
frequencies have been set to exactly match the harmonic frequencies, the associated damping
being zero (those frequencies and damping values are not given in Table 3). The other identified
frequency and damping is listed in Table 3 and can be seen to be very close to the frequency and
damping of the searched mode.
The modal parameters have also been computed by the modified LSCE method. The frequency

found is 271:175 Hz and the associated damping is 0.22%.

3.4. Robustness of the modified SIMO–SSTD with respect to assumed harmonic frequencies

From all the examples, it is observed that classical identification algorithms applied to the
correlation functions obtained from OMA do not work well in the presence of harmonic
excitations with frequencies close to the natural frequencies of the system. The new method
proposed here is able to provide reliable modal parameters in those cases.
Obviously, it is important to introduce the exact harmonic frequencies in the identification a

priori (see Eq. (21)). Consider again the experimental example where two harmonic excitations are
acting at 274 and 276 Hz (as in Section 2.2). In order to investigate the sensitivity of the
identification to the accuracy of the harmonic frequency specified in the modified SIMO–SSTD,
assumed harmonic frequencies different from the actual ones will be introduced in the algorithm.
In Figs. 6 and 7, the eigenfrequency identified by the modified SIMO–SSTD as a function of the
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Table 3

Frequencies and associated damping identified by the SIMO–SSTD and the modified SIMO–SSTD

Modes Standard ITD Modified ITD

Freq. 1

(Hz)

Damp. 1

(%)

Freq. 2

(Hz)

Damp. 2

(%)

Freq. 3

(Hz)

Damp. 3

(%)

Freq.

(Hz)

Damp.

(%)

80 271.807 0.354 280.257 1.028 287.659 0.007 271.002 0.236

76 271.769 0.180 276.723 0.024 287.972 0.192 270.992 0.233

72 271.835 0.079 276.725 0.048 287.794 0.258 270.979 0.229

68 — — 276.805 0.060 287.763 0.396 270.992 0.232

64 — — 276.773 0.080 287.472 0.314 271.058 0.232

60 — — 276.831 0.077 287.344 0.373 270.990 0.252

56 — — 276.866 0.080 287.172 0.386 270.948 0.284

52 — — 276.882 0.075 287.099 0.411 270.891 0.278

48 — — 276.878 0.075 287.105 0.418 270.945 0.503

44 — — 276.891 0.072 287.021 0.440 270.877 1.010

40 270.921 0.066 276.921 0.072 286.854 0.442 272.311 1.727

36 270.762 0.248 276.949 0.058 286.703 0.554 — —

32 271.987 0.286 276.863 0.030 287.677 0.807 — —

28 275.099 0.998 — — 287.942 1.625 — —

24 — — 277.041 0.230 277.123 0.265 — —
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assumed harmonic frequencies is plotted for an identification order of 46. The actual harmonic
frequencies are 274 and 276 Hz while the assumed ones introduced in the identification are varied
simultaneously.
It is observed that if the assumed harmonic frequencies are different from the actual ones, the

identified eigenfrequency varies linearly with respect to the harmonic frequency input in
the vicinity of the exact harmonic frequency. Also the identified damping ratio is very sensitive to
the accuracy of the harmonic frequencies specified in the identification procedure. Hence, it is
essential to introduce the assumed harmonic frequencies into the new algorithm accurately.
Otherwise the harmonic components explicitly included in the identification are not capable of
representing the harmonic part of the signal properly and the new method gives no better results
than standard procedures.
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Fig. 6. Eigenfrequency versus assumed harmonic frequency in the modified SIMO–SSTD (harmonic excitations at 274

and 276 Hz). X; assumed first harmonic; Y; assumed second harmonic.

Fig. 7. Damping versus assumed harmonic frequencies in the modified SIMO–SSTD (harmonic excitations at 274 and

276 Hz). X; assumed first harmonic; Y; assumed second harmonic.
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4. Conclusions

In this paper, a SIMO–SSTD variant of the Ibrahim Time Domain algorithm has
been introduced to identify modal parameters from measurements in operational modal analysis.
In particular, a modification is proposed in the identification procedure to account explicitly
for harmonic components that might be present in addition to the response to stationary white
noise.
The proposed modified SIMO–SSTD method allows eigenfrequencies of the system

to be identified accurately even when harmonic components with frequencies close
to an eigenfrequency are present. Damping parameters are however difficult to identify
accurately if harmonic excitations hide the actual eigenresponse of the system.
Standard identification methods fail to identify the system parameters properly in that
case. Results of the method described here are slightly better than identification results
obtained with a previously proposed modified LSCE approach [9] (typically dampings are better
identified).
In these tests, it was found that in order to identify eigenparameters accurately, the harmonic

frequencies introduced a priori into the identification should be known precisely. If the assumed
harmonic frequencies are different from the actual ones, the identification with the modified
algorithm yields results similar to those obtained from standard methods.
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